MANIC FM

Monday, June 14, 2010

20 ESSENTIAL LATEX

A Mathematical symbols

􀀀 \alpha _ \beta

_

\gamma

_

\delta

_ \epsilon

_

\varepsilon

_

\zeta

_

\eta

_ \theta

\vartheta

\iota

_

\kappa

_ \lambda

\mu

_

\nu

_

\xi

_ o

_

\pi

_

\varpi

_

\rho

_ \varrho

_

\sigma

_

\varsigma

_

\tau

_ \upsilon

_

\phi

_

\varphi

_

\chi

_ \psi

_

\omega

_ \Gamma

_

\Delta

\Theta

!

\Lambda

" \Xi

#

\Pi

$

\Sigma

%

\Upsilon

& \Phi

'

\Psi

(

\Omega

Table 1: Greek letters

) \pm

*

\cap

+

\diamond

,

\oplus

- \mp

.

\cup

/

\bigtriangleup

0

\ominus

1 \times

2

\uplus

3

\bigtriangledown

4

\otimes

5 \div

6

\sqcap

7

\triangleleft

8

\oslash

9 \ast

:

\sqcup

;

\triangleright

<

\odot

= \star

>

\vee

?

\lhd

@ A

\bigcirc

B \circ

C

\wedge

D

\rhd

@ E

\dagger

F \bullet

G

\setminus

H

\unlhd

@ I

\ddagger

J \cdot

K

\wr

L

\unrhd

@ M

\amalg

@

Not predefined in LATEX2

N

. Use the packages latexsym or amssymb

Table 2: Binary operation symbols

O \leq

P

\geq

Q

\equiv

RS

\models

T

\prec

U \succ

V

\sim

W

\perp

X

\preceq

Y

\succeq

Z \simeq

R

\mid

[

\ll

\

\gg

]

\asymp

^ \parallel

_

\subset

`

\supset

a

\approx

;b7

\bowtie

c \subseteq

d

\supseteq

VS

\cong

e

\Join

f

\sqsubset

g \sqsupset

Sh

\neq

i

\smile

j

\sqsubseteq

k

\sqsupseteq

S l

\doteq

m

\frown

n

\in

o

\ni

p

\propto

S

=

q

\vdash

r

\dashv

s

<

t

>

Table 3: Relation symbols

ESSENTIAL LATEX 21

􀀀 _ \rmoustache _ _ \lmoustache 􀀀_

\rgroup __ \lgroup

__

\arrowvert __

\Arrowvert __

\bracevert

Table 4: Large delimiters

_ \uparrow _ \Uparrow \downarrow \Downarrow _ \{ _ \} \updownarrow _ \Updownarrow _ \lfloor _ \rfloor _ \lceil _ \rceil _ \langle _ \rangle _ /

G

\backslash

R

| ^ \|

Table 5: Delimiters

_ \leftarrow ___ \longleftarrow _ \uparrow

_ \Leftarrow _ S

\Longleftarrow _ \Uparrow

_ \rightarrow ___ \longrightarrow \downarrow

_ \Rightarrow

S _ \Longrightarrow \Downarrow

_ \leftrightarrow ___ \longleftrightarrow \updownarrow

_ \Leftrightarrow _ _ \Longleftrightarrow _ \Updownarrow

!_ \mapsto !___ \longmapsto " \nearrow

_$# \hookleftarrow %_ \hookrightarrow & \searrow

' \leftharpoonup ( \rightharpoonup ) \swarrow

* \leftharpoondown + \rightharpoondown , \nwarrow

Table 6: Arrow symbols

l l l

\ldots J J J \cdots

...

\vdots

. . . \ddots - \aleph

. \prime / \forall 0 \infty 1 \hbar 2 \emptyset 3 \exists 4 \nabla 5 \surd 6 \Box

@ /

\triangle 7 \Diamond

@98 \imath : \jmath ; \ell < \neg = \top > \flat ? \natural @ \sharp A \wp

W

\bot B \clubsuit C \diamondsuit D \heartsuit E \spadesuit F \mho

@ G \Re H \Im I \angle J \partial

@

Not predefined in LATEX2

N

. Use the packages latexsym or amssymb

Table 7: Miscellaneous symbols

22 ESSENTIAL LATEX

\arccos \cos \csc \exp \ker \limsup \min \sinh

\arcsin \cosh \deg \gcd \lg \ln \Pr \sup

\arctan \cot \det \hom \lim \log \sec \tan

\arg \coth \dim \inf \liminf \max \sin \tanh

Table 8: Log-like symbols

_􀀀 \hat{a} _ _ \acute{a} __ \bar{a} __ \dot{a} __ \breve{a}

__ \check{a} __ \grave{a} __ \vec{a} _ \ddot{a} _ \tilde{a}

Table 9: Math mode accents

_ \sum

_

\prod

\coprod

_

\int

_

\oint

_ \bigcap

_

\bigcup

_

\bigsqcup

_

\bigvee

_

\bigwedge

_ \bigodot

_

\bigotimes

_

\bigoplus

_

\biguplus

Table 10: Variable-sized symbols

___ ___ \widetilde{abc}

___ __ \widehat{abc} _ _ _____ \overleftarrow{abc} __ _____ \overrightarrow{abc}

_____ \overline{abc} _____ \underline{abc}

_!__ ___"!_# \overbrace{abc} "!__#____!_

\underbrace{abc}

5 _____ \sqrt{abc}

$5

_____ \sqrt[n]{abc}

%'& f’

,.@)-0(+*/

\frac{abc}{xyz}

Table 11: LATEX math constructs

1 \hbar

1

\hslash

2

\vartriangle

3 \triangledown

4

\square

5

\lozenge

6 \circledS I \angle

7

\measuredangle

8 \nexists F \mho

9

\Finv

: \Game @

@ ;

\Bbbk

@ <

\backprime

= \varnothing

>

\blacktriangle

?

\blacktriangledown

@ \blacksquare

A

\blacklozenge

B

\bigstar

C \sphericalangle

D

\complement

E

\eth

F \diagup

@ G

\diagdown

@

@

Not defined in style amssymb, define using the LATEX2

N

\DeclareMathSymbol command

Table 12: AMS miscellaneous symbols

ESSENTIAL LATEX 23

􀀀 \digamma

_

\varkappa

_

\beth

_

\daleth

_

\gimel

Table 13: AMS Greek and Hebrew

_ \ulcorner

_

\urcorner

_

\llcorner

_

\lrcorner

Table 14: AMS delimiters

__ \dashrightarrow

_ \dashleftarrow

_

\leftleftarrows

_ \leftrightarrows

_

\Lleftarrow

_

\twoheadleftarrow

_ \leftarrowtail

_

\looparrowleft

_

\leftrightharpoons

_ \curvearrowleft

_

\circlearrowleft

_

\Lsh

_ \upuparrows

_

\upharpoonleft

_

\downharpoonleft

_ \multimap

_

\leftrightsquigarrow

_

\rightrightarrows

_ \rightleftarrows

_

\rightrightarrows _ \rightleftarrows

\twoheadrightarrow

!

\rightarrowtail

"

\looparrowright

# \rightleftharpoons

$

\curvearrowright

%

\circlearrowright

& \Rsh

'

\downdownarrows

(

\upharpoonright

) \downharpoonright

*

\rightsquigarrow

Table 15: AMS arrows

+ \nleftarrow

,

\nrightarrow

-

\nLeftarrow

. \nRightarrow

/

\nleftrightarrow

0

\nLeftrightarrow

Table 16: AMS negated arrows

1 \dotplus

2

\smallsetminus

3

\Cap

4 \Cup

5

\barwedge

6

\veebar

7 \doublebarwedge

8

\boxminus

9

\boxtimes

: \boxdot

;

\boxplus

<

\divideontimes

= \ltimes

>

\rtimes

?

\leftthreetimes

@ \rightthreetimes

A

\curlywedge

B

\curlyvee

C \circleddash

D

\circledast

E

\circledcirc

F

\centerdot

G

\intercal

Table 17: AMS binary operators

24 ESSENTIAL LATEX

􀀀 \leqq

_

\leqslant

_

\eqslantless

_ \lesssim

_

\lessapprox

_

\approxeq

_ \lessdot

_

\lll

_

\lessgtr

\lesseqgtr

\lesseqqgtr

_

\doteqdot

_ \risingdotseq

\fallingdotseq

_

\backsim

_ \backsimeq

_

\subseteqq

_

\Subset

f

\sqsubset

_

\preccurlyeq

_

\curlyeqprec

_ \precsim

_

\precapprox

_

\vartriangleleft

_ \trianglelefteq

_

\vDash

_

\Vvdash

_ \smallsmile

_

\smallfrown

_

\bumpeq

_ \Bumpeq

_

\geqq

_

\geqslant

\eqslantgtr

!

\gtrsim

"

\gtrapprox

# \gtrdot

$

\ggg

%

\gtrless

& \gtreqless

'

\gtreqqless

(

\eqcirc

) \circeq

*

\triangleq

+

\thicksim

, \thickapprox

-

\supseteqq

.

\Supset

g \sqsupset

/

\succcurlyeq

0

\curlyeqsucc

1 \succsim

2

\succapprox

3

\vartriangleright

4 \trianglerighteq

5

\Vdash

6

\shortmid

7 \shortparallel

8

\between

9

\pitchfork

: \varpropto

;

\blacktriangleleft

<

\therefore

= \backepsilon

>

\blacktriangleright

?

\because

Table 18: AMS binary relations

@ \nless

A

\nleq

B

\nleqslant

C \nleqq

D

\lneq

E

\lneqq

F \lvertneqq

G

\lnsim

H

\lnapprox

I \nprec

J

\npreceq

K

\precnsim

L \precnapprox

M

\nsim

N

\nshortmid

O \nmid

P

\nvdash

Q

\nvDash

R \ntriangleleft

S

\ntrianglelefteq

T

\nsubseteq

U \subsetneq

V

\varsubsetneq

W

\subsetneqq

X \varsubsetneqq

Y

\ngtr

Z

\ngeq

[ \ngeqslant

\

\ngeqq

]

\gneq

^ \gneqq

_

\gvertneqq

`

\gnsim

a \gnapprox

b

\nsucc

c

\nsucceq

d \succnsim

e

\succnapprox

f

\ncong

g \nshortparallel

h

\nparallel

Q

\nvDash

i \nVDash

j

\ntriangleright

k

\ntrianglerighteq

l \nsupseteq

m

\nsupseteqq

n

\supsetneq

o \varsupsetneq

p

\supsetneqq

q

\varsupsetneqq

Table 19: AMS negated binary relations

ESSENTIAL LATEX 25

B Horrible Mathematical Examples to Study

__􀀀____ S 5 ___ __ ___ ,__________ (2)

\begin{equation}

\phi(t)=\frac{1}{\sqrt{2\pi}}

\intˆt_0 eˆ{-xˆ2/2} dx

\end{equation}

____ _____ __ _ _ _ "! $#% S __ _ !'& __( )+.*_1',)__-.12,/03*$

_ _"45__76 -l l l #%_8(3)

\begin{equation}

\prod_{j\geq 0}

\left(\sum_{k\geq 0}a_{jk} zˆk\right)

= \sum_{k\geq 0} zˆn

\left( \sum_{{k_0,k_1,\ldots\geq 0}

\atop{k_0+k_1+\ldots=n} }

a{_0k_0}a_{1k_1}\ldots \right)

\end{equation}

_9􀀀;:__S <>_ &=?_

@@ACB < style=""> _= 6

_􀀀;D _4__ _ED _4___F _ 6HIGG (4)

\begin{equation}

\pi(n) = \sum_{m=2}ˆ{n}

\left\lfloor \left(\sum_{k=1}ˆ{m-1}

\lfloor(m/k)/\lceil m/k\rceil

\rfloor \right)ˆ{-1}

\right\rfloor

\end{equation}

_ @__ __" JK # MLl l l L_MLON(__ _P" JQK # $Ll l l L_

" #__ SR 6?T+UVHT+W.X_Y _ (5)

\begin{equation}

\{\underbrace{%

\overbrace{\mathstrut a,\ldots,a}ˆ{k\ a’s},

\overbrace{\mathstrut b,\ldots,b}ˆ{l\ b’s}}

_{k+1\ \mathrm{elements}} \}

\end{equation}

WR " R[Z __ "\ _ _ R[Z _ _ & _ R]Z _ _ _^R[Z _ T

\begin{displaymath}

\mbox{W}ˆ+\

\begin{array}{l}

\nearrow\raise5pt\hbox{$\muˆ+ + \nu_{\mu}$}\\

\rightarrow \piˆ+ +\piˆ0 \\[5pt]

\rightarrow \kappaˆ+ +\piˆ0 \\

\searrow\lower5pt\hbox{$\mathrm{e}ˆ+

+\nu_{\scriptstyle\mathrm{e}}$}

\end{array}

\end{displaymath}

`􀀀_L_a_Scbed5fhg iii

`,.& , ` ,.& - ` ,& `-0& , ` -0& - ` -& `,& ` -& b iii

Scb

\begin{displaymath}

{F}(x,y)=0\quad\mathrm{and}\quad

\left|\begin{array}{ccc}

F_{xx}’’ & F_{xy}’’ & F_{x}’ \\

F_{yx}’’ & F_{yy}’’ & F_{y}’ \\

F_{x}’ & F_{y}’ & 0

\end{array} \right| =0

\end{displaymath}

26 ESSENTIAL LATEX

) iii

_6_ __ a6_ a_ !6_ ___6 D 6 : 6 ! _ _ D _ : _ iii ii

___6 DD _6 ii

_Zii

D: 66 :_66 ii

_Zii

D: __ :___ ii

_

\begin{displaymath}

\frac{\pm

\left|\begin{array}{ccc}

x_1-x_2 & y_1-y_2 & z_1-z_2 \\

l_1 & m_1 & n_1 \\

l_2 & m_2 & n_2

\end{array}\right|}{

\sqrt{\left|\begin{array}{cc}l_1&m_1\\

l_2&m_2\end{array}\right|ˆ2

+ \left|\begin{array}{cc}m_1&n_1\\

n_1&l_1\end{array}\right|ˆ2

+ \left|\begin{array}{cc}m_2&n_2\\

n_2&l_2\end{array}\right|ˆ2}}

\end{displaymath}

____ 􀀀__ L__ __ L_ L__ S __ 􀀀 _ _ _ 1@A__ ___ _ _ _ __ _

_ ________ &_􀀀___ ____

􀀀___ ____ _ Z _ ___ _____ _ _ _ _ (6)

Z 􀀀__ __ Z _ __ _ _

􀀀___ ____ _ Z _ ___ ____&__ _ _ _ _ _ _ _ Z _ &__ __ __ _

GI \newcommand{\CA}{C_{\rm A}} \newcommand{\CV}{C_{\rm V}}

\newcommand{\CPA}{{C’}_{\rm A}} \newcommand{\CPV}{{C’}_{\rm V}}

\newcommand{\GZ}{\Gammaˆ2_{\rm Z}}

\newcommand{\MZ}{Mˆ2_{\rm Z}} \newcommand{\MZs}{{(s-Mˆ2_{\rm Z})}}

\newcommand{\BE}{\left\{\frac{\displaystyle 3-\betaˆ2}{\displaystyle 2}\right\}}

\begin{eqnarray}

\sigmaˆf_0(Q,T_{3R},\beta,s) & = &

\frac{4\pi\alphaˆ2}{3s}\beta \times

\left[ \frac{Qˆ2 \BE - 2Q \CV \CPV s \MZs}{\MZsˆ2 + \MZ \GZ \BE}

\right. \nonumber \\[-3mm]

& & \\[-3mm]

& + &

\left.\frac{(\CVˆ2 + \CAˆ2) sˆ2}%

{\MZsˆ2+\MZ\GZ\left\{\CPVˆ2 \BE+\CPAˆ2 \{\betaˆ2\}\right\}}

\right] \nonumber

\end{eqnarray}

Bibliography

1 Leslie Lamport. LATEX—A Document Preparation System—User’s Guide and Reference Manual.

Addison-Wesley, Reading, MA, USA, 1985.

2 Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley,

Reading, MA, USA, 1986.

3 Michel Goossens, Frank Mittelbach and Alexander Samarin. The LATEX Companion Addison-

Wesley, Reading, MA, USA, 1993.

No comments:

Post a Comment