VECTOR METHODS
- Vectors and vector addition
- Unit vectors
- Base vectors and vector components
- Rectangular coordinates in 2-D
- Rectangular coordinates in 3-D
- A vector connecting two points
- Dot product
- Cross product
- Triple product
- Triple vector product
Vectors and vector addition:
A scalar is a quantity like mass or temperature that only has a magnitude. On the other had, a vector is a mathematical object that has magnitude and direction. A line of given length and pointing along a given direction, such as an arrow, is the typical representation of a vector. Typical notation to designate a vector is a boldfaced character, a character with and arrow on it, or a character with a line under it (i.e., ). The magnitude of a vector is its length and is normally denoted by or A.
Addition of two vectors is accomplished by laying the vectors head to tail in sequence to create a triangle such as is shown in the figure.
The following rules apply in vector algebra.
Unit vectors:
A unit vector is a vector of unit length. A unit vector is sometimes denoted by replacing the arrow on a vector with a "^" or just adding a "^" on a boldfaced character (i.e., ). Therefore,
Base vectors are a set of vectors selected as a base to represent all other vectors. The idea is to construct each vector from the addition of vectors along the base directions. For example, the vector in the figure can be written as the sum of the three vectors u1, u2, and u3, each along the direction of one of the base vectors e1, e2, and e3, so that
A vector can be resolved along any two directions in a plane containing it. The figure shows how the parallelogram rule is used to construct vectors a and b that add up to c.
When vectors are represented in terms of base vectors and components, addition of two vectors results in the addition of the components of the vectors. Therefore, if the two vectors A and B are represented by
The base vectors of a rectangular x-y coordinate system are given by the unit vectors and along the x and y directions, respectively.
Using the base vectors, one can represent any vector F as
The base vectors of a rectangular coordinate system are given by a set of three mutually orthogonal unit vectors denoted by , , and that are along the x, y, and z coordinate directions, respectively, as shown in the figure.
The system shown is a right-handed system since the thumb of the right hand points in the direction of z if the fingers are such that they represent a rotation around the z-axis from x to y. This system can be changed into a left-handed system by reversing the direction of any one of the coordinate lines and its associated base vector.
In a rectangular coordinate system the components of the vector are the projections of the vector along the x, y, and z directions. For example, in the figure the projections of vector A along the x, y, and z directions are given by Ax, Ay, and Az, respectively.
Direction cosines are defined as
where the angles , , and are the angles shown in the figure. As shown in the figure, the direction cosines represent the cosines of the angles made between the vector and the three coordinate directions.
The direction cosines can be calculated from the components of the vector and its magnitude through the relations
The three direction cosines are not independent and must satisfy the relation
This results form the fact that
A unit vector can be constructed along a vector using the direction cosines as its components along the x, y, and z directions. For example, the unit-vector along the vector A is obtained from
Therefore,
The vector connecting point A to point B is given by
The dot product is denoted by "" between two vectors. The dot product of vectors A and B results in a scalar given by the relation
Since the angle between a vector and itself is zero, and the cosine of zero is one, the magnitude of a vector can be written in terms of the dot product using the rule
When working with vectors represented in a rectangular coordinate system by the components
then the dot product can be evaluated from the relation
This can be verified by direct multiplication of the vectors and noting that due to the orthogonality of the base vectors of a rectangular system one has
The orthogonal projection of a vector along a line is obtained by moving one end of the vector onto the line and dropping a perpendicular onto the line from the other end of the vector. The resulting segment on the line is the vector's orthogonal projection or simply its projection.
The scalar projection of vector A along the unit vector is the length of the orthogonal projection A along a line parallel to , and can be evaluated using the dot product. The relation for the projection is
The vector projection of A along the unit vector simply multiplies the scalar projection by the unit vector to get a vector along . This gives the relation
The cross product of vectors a and b is a vector perpendicular to both a and b and has a magnitude equal to the area of the parallelogram generated from a and b. The direction of the cross product is given by the right-hand rule . The cross product is denoted by a "" between the vectors
When working in rectangular coordinate systems, the cross product of vectors a and b given by
can be evaluated using the rule
One can also use direct multiplication of the base vectors using the relations
The triple product of vectors a, b, and c is given by
The triple product has the following properties
Consider vectors described in a rectangular coordinate system as
The triple product can be evaluated using the relation
The triple vector product has the properties
No comments:
Post a Comment