MANIC FM

Saturday, July 24, 2010

Vectors Calaulus 1.15

MATH 202 PRACTICE MIDTERM 1

 
Please work out five of the given six problems and indicate which problem you are omitting.  Credit will be based on the steps that you show towards the final answer.  Show your work.
  
PROBLEM 1 
Please answer the following true or false.  If false, explain why or provide a counter example.  If true explain why
 
A)     If r(t) is parameterized by arclength, then a and N are parallel.


True,  since 
        s(t)  =  t
We have 
        s''(t)  =  0
So that 
        a  =  s''(t)T + k(s')2N  =  k(s')2N  
so that a and N are multiples of each other.  Hence they are parallel.



B)    (13 Points)  If r(t) is a differentiable vector valued function then
       


False,  for example if
        r(t)  =   i + t j
then
       
and
        ||r'(t)||  =  || j ||  =  1
So they are different. 

PROBLEM 2 
 
Let
        r(t)  =  2t i - 4t2 j
Find T(-1)

We have
        r'(t)  =  2 i - 8t j 
so that 
       
Now just plug in -1 for t to get
          



Find N(-1).
   
 
Use the quotient rule to get
       
Now get rid of the denominator and multiply by the root to get
        (-4j)(1 + 16t2) - (i - 4tj)(16t)
        =  4[-j(1 + 16t2) - (i - 4tj)(4t)]
Now divide by 4 and plug in -1 for t to get
        -17 j - (i + 4j)(-4)  =  4i - j
Dividing by the magnitude gives
       
 




Find the equation of the circle of curvature for r(t) at t  =  -1.  


The acceleration vector is 
        a  =  r''(t)  =  -8j 
Dotting with the normal vector gives the component of the acceleration in the direction of the normal vector.  We get
        aN  = 
and
        (ds/dt)2  =  ||r'(t)||2  =  1 + 64t2 
evaluating at t  =  -1 gives
        65
Using the curvature formula gives
        65K  =  an  
so that 
       
The radius of the circle is just the reciprocal of the curvature.
To find the center, we add the vectors
        Center  =  r(-1) + KN
which gives
       
Call this 
        ai + bj 
Then the equation of the circle is just
        (x - a)2 + (y - b)2  =  1/K2

No comments:

Post a Comment