MANIC FM

Saturday, July 24, 2010

Vectors Calaulus 1.4


Surfaces
Let C be a curve, then we define a cylinder to be the set of all lines 
through C and perpendicular to the plane that C lies in.
         


We can tell that an equation is a cylinder is it is missing one of the variables.
 

Quadric Surfaces
Recall that the quadrics or conics are lines , hyperbolas, parabolas, circles, 
and ellipses.  In three dimensions, we can combine any two of these and
make a quadric surface.  For example

       

is a paraboloid since for constant z we get a circle and for constant x or y we
get a parabola.  We use the suffix -oid to mean ellipse or circle.  We have:


   
  •        x2          y2          z2
                 +           +            =  1 is an ellipsoid    
          a2          b2          c2       

  •           x2         y2         z2
        -          -           +            =  1 is a hyperboloid of 2 sheets while    
            a2         b2          c2       


  •        x2          y2          z2
                 +           -            =  1 is a hyperboloid of 1 sheet    
          a2          b2          c2       
        

Surface of Revolution
Let y = f(x) be a curve, then the equation of the surface of revolution 
abut the x-axis is

        y2 + z2 = f(x)2


Example
Find the equation of the surface that is formed when the curve
        y   =   sin x          0  <  x  < p/2
is revolved around the y-axis.
Solution
This uses a different formula since this time the curve is revolved around the y-axis. 
The circular cross section has radius sin-1 y and the circle is perpendicular to the y-axis.  Hence the equation is
        x2 + z2 = (sin-1 y)2



Cylindrical Coordinates
We can extend polar coordinates to three dimensions by

     x = rcosq
    
y = rsinq
    
z = z

Example


We can write (1,1,3) in cylindrical coordinates.  We find 
       
and
         
so that the cylindrical coordinates are

        (, p/4, 3)



Spherical Coordinates

An alternate coordinate system works on a distance and two angle method
called spherical coordinates.  We let r denote the distance from the point to the origin, q represent the same q as in cylindrical coordinates, and f denote the angle from the positive z-axis to the point.  The picture tells us that
        r  =  r sin f  
and that 
        z  =  r cos f  
From this we can find

     x = rcosq = r sin f cosq
     y = r sinq = r sin f sinq
     z = r cos f

Immediately we see that

        x2 + y2 + z2 = r2
We use spherical coordinates whenever the problem involves a distance 
from a source.
 
Example
convert the surface 
        z  =  x2 + y2
to an equation in spherical coordinates.  
Solution
We add z2 to both sides
        z + z2  =  x2 + y2 + z2 
Now it is easier to convert
        r cos f + r2 cos2 f  =  r2 
Divide by r to get
        cos f + r cos2 f  =  r
Now solve for r.
                      cos f                    cos f 
         r =                            =                     =  csc f  cot f  
                   1 - cos2 f                sin2 f  


 





No comments:

Post a Comment