MANIC FM

Saturday, July 24, 2010

Vectors Calaulus 1.17

PROBLEM 5  
Find the parametric equations of the tangent line to the curve that is formed by intersecting the sphere  x2 + y2 + z2  =  2 and the plane x + y - z  =  2 at the point (1,1,0).
  The tangent line to this curve lies on the tangent planes of each of the two surfaces.  We can conclude that this line is orthogonal to both normal vectors.  The gradient vectors are
        grad F  =  2x i + 2yj + 2z k        and        grad G  =  i + j - k
Evaluating these at the point (1,1,0) gives
        n1  =  2 i + 2 j        and        n1  =   i + j - k
The cross product is
       
Now we use the formula for a line given a point and a parallel vector
        r(t)  =  i + j + t(-2i + 2j)
The parametric equations are 
        x(t)  =  1 - 2t        y(t)  =  1 + 2t        z(t)  =  0



PROBLEM 6  
If 
        a(t)  =  t i + j - k
find r(5) if 
        r(0)  =  i - k      and         r(1)  =  j + k
Solution:

We integrate to get the velocity function
        v(t)  =  (1/2 t2 + vx )i + (t + vy )j + (-t + vz )k
Integrate again to get 
        r(t)  =  (1/6 t3 + vxt + rx)i + (1/2 t2 + vyt + ry)j + (-1/2t2 + vzt + rz )k
Now plug in the first initial condition to get
        rx i + ry j + rz k  =   i - k
So that 
        rx  =  1        ry  =  0        rz  =  -1
Plugging these in and using the second initial condition gives
        (1/6 + vx + 1)i + (1/2 + vy)j + (-1/2 + vz - 1)k  =   j + k  
So that 
        vx  =  -7/6        vy  =  1/2        vz  =  5/2
Substituting gives
        r(t)  =  (1/6 t3 - 7/6 t + 1)i + (1/2 t2 + 1/2 t)j + (-1/2t2 + 5/2 t - 1)k
Now plug in 5 to get
        r(5)  =  (125/6  - 35/6 + 1)i + (25/2 + 5/2)j + (-25/2 + 25/2 - 1 )k
        =  16 i + 15 j - k
 
 
 

No comments:

Post a Comment