MANIC FM

Saturday, July 24, 2010

Vectors Calaulus 1.7


Velocity and Acceleration
 
Definition of Velocity and Speed
In single variable calculus the velocity is defined as the derivative of the position function. 
For vector calculus, we make the same definition.
 
Definition of Velocity
Let r(t) be a differentiable vector valued function representing the 
position vector of a particle at time t.  Then the velocity vector is the
derivative of the position vector.
               v(t)  =  r'(t)  =  x'(t)i + y'(t)j + z'(t)k
 
Example
Find the velocity vector v(t) if the position vector is 
        r(t)  =  3ti + 2t2j - sin t k 

Solution
We just take the derivative
        v(t)  =  3i + 4tj + cos t k 

When we think of speed, we think of how fast we are going.  Speed should not be negative.  
In one variable calculus, speed was the absolute value of the velocity.  For vector calculus,
it is the magnitude of the velocity.
 
Definition of Speed
Let r(t) be a differentiable vector valued function representing the position 
of a particle.  Then the speed of the particle is the magnitude of the 
velocity vector.
          Speed  =  || v(t) ||  =  || r'(t) ||
 
Example
Let 
        r(t)  = 3i + 2t j + cos t k
Find the speed after p/4 seconds.
 
Solution
We first find the velocity vector
        v(t)  =  r'(t)  =  2 j - sin t k
We have 
        v(p/4)  =  2 j - /2 k
Its magnitude is the square root of the sum of the squares or
        Speed  =  || v ||  = 
 

In one variable calculus, we defined the acceleration of a particle as the second derivative of the
position function.  Nothing changes for vector calculus.
 
Definition of Acceleration
Let r(t) be a twice differentiable vector valued function representing the 
position vector of a particle at time t.  Then the acceleration vector is the
second derivative of the position vector.
               a(t)  =  r''(t)  =  x''(t)i + y''(t)j + z''(t)k
 
Example
Find the velocity and acceleration of the position function
        r(t)  = 4t i + t2 j 
when t  =  -1.  Then sketch the vectors.

Solution 
The velocity vector is
        v(t)  =  r'(t)  =  4 i  + 2t j
Plugging in -1 for t gives
        v(-1)  =  4 i - 2j
Take another derivative to find the acceleration.
        a(t)  =  v'(t)  =  2j
Below is a picture of the vectors.
       
 

Since the velocity and acceleration vectors are defined as first and second derivatives of 
the position vector, we can get back to the position vector by integrating.

Example
You are a anti-missile operator and have spotted a missile heading towards you at the position
        re  =  1000i + 500j
with velocity 
          ve  =  -30i + 3j 
You can fire your anti-missile at 100 meters per second.  At what angle should you fire it 
so that you intercept the missile.  Assume that gravity is the only force acting on the projectiles.

Solution
The acceleration vector of the enemy missile is 
        ae(t)  =  -9.8 j 
Integrating, we get the velocity vector
        ve(t)  =  v1 i + (v2 - 9.8t) j
Setting t  =  0 and using the initial velocity of the enemy missile gives
        ve(t)  =  -30 i + (3 - 9.8t) j
Now integrate again to find the position function
        re(t)  =  (-30t + r1) i + (-4.9t2 + 3t + r2) j
Again setting t  =  0 and using the initial conditions gives
        re(t)  =  (-30t + 1000) i + (-4.9t2 + 3t + 500) j
The acceleration of your anti-missile-missile is also
        ay(t)  =  -9.8 j 
Integrating, we get the velocity vector
        vy(t)  =  v1 i + (v2 - 9.8t) j
Since the magnitude of our velocity is 100, we can say
        vy(0)  =  100 cos q i + 100 sin q j
So that
        vy(t)  =  100 cos q i + (100 sin q - 9.8t) j
Now integrate again to find the position function
        ry(t)  =  (100t cos q + r1) i + (-4.9t2 + 100t sin q + r2) j
Our anti-missile-missile starts out at base, so the initial position is the origin.  All the 
constants are zero.
        ry(t)  =  (100t cos q) i + (-4.9t2 + 100t sin q) j
Since we want to intercept the enemy missile, we set the position vectors equal to each other.
        (100t cos q) i + (-4.9t2 + 100t sin q) j  =  (-30t + 1000) i + (-4.9t2 + 3t + 500) j
Equating coefficients gives
        100t cos q =  -30t + 1000
        -4.9t2 + 100t sin q  =  -4.9t2 + 3t + 500
The first equation gives 
                         1000
        t  =                                 
                  100cos q  +  30
Simplifying the second equation and substituting gives
             100000 sin q                    3000
                                      =                                  +  500        
           100cos q  +  30          100cos q +  30        
Clear denominators to get
        100000 sin q  =  3000 + 50000 cos q + 15000
At this point we use a calculator to solve for q to
        =  .62535 radians  
 

 

No comments:

Post a Comment